Part Number Hot Search : 
PS5002LR 4N38SR2M SFH6943A LINEAR LTC36 74AHC1G 245MT XC7Z010
Product Description
Full Text Search
 

To Download HUF76113T3ST Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF76113T3ST
TM
Data Sheet
June 2000
File Number
4388.3
4.7A, 30V, 0.031 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
This N-Channel power MOSFET is (R) manufactured using the innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. Formerly developmental type TA76113.
Features
* Logic Level Gate Drive * 4.7A, 30V * Ultra Low On-Resistance, rDS(ON) = 0.031 * Temperature Compensating PSPICE(R) Model * Temperature Compensating SABERTM Model * Thermal Impedance SPICE Model * Thermal Impedance SABER Model * Peak Current vs Pulse Width Curve * UIS Rating Curve * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"
Ordering Information
PART NUMBER HUF76113T3ST PACKAGE SOT-223 76113 BRAND
Symbol
D
NOTE: HUF76113T3ST is available only in tape and reel.
G
S
Packaging
SOT-223
DRAIN (FLANGE)
SOURCE DRAIN GATE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET(R) is a registered trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABERTM is a trademark of Analogy, Inc. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright (c) Intersil Corporation 2000
HUF76113T3ST
Absolute Maximum Ratings
TA = 25oC, Unless Otherwise Specified HUF76113T3ST Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 30 30 16 4.7 2.7 2.6 Figure 4 Figure 6 1.1 0.0091 -55 to 150 300 260 UNITS V V V A A A
W W/oC oC
oC oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC.
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS
TA = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current
BVDSS IDSS
ID = 250A, VGS = 0V (Figure 12) VDS = 25V, VGS = 0V VDS = 25V, VGS = 0V, TC = 150oC
30 -
-
1 250 100
V A A nA
Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance
IGSS
VGS = 16V
VGS(TH) rDS(ON)
VGS = VDS, ID = 250A (Figure 11) ID = 4.7A, VGS = 10V (Figure 9, 10) ID = 2.7A, VGS = 5V (Figure 9) ID = 2.6A, VGS = 4.5V (Figure 9)
1 -
0.027 0.033 0.035
3 0.031 0.038 0.040
V W W W
THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RJA Pad Area = 0.173 in2 (Note 2) Pad Area = 0.068 in2 (See TB377) Pad Area = 0.026 in2 (See TB377) SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF VDD = 15V, ID 2.6A, RL = 5.8, VGS = 4.5V, RGS = 18 (Figure 15) 12 46 31 31 90 95 ns ns ns ns ns ns 110 133 157
oC/W oC/W oC/W
2
HUF76113T3ST
Electrical Specifications
PARAMETER TA = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance NOTES: 2. Rated with RJA=110oC/W measured using FR-4 board with 0.173 in2 copper at 1000 seconds. CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) 625 310 60 pF pF pF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 15V, ID 2.7A, RL = 5.5 Ig(REF) = 1.0mA (Figure 14) 17.0 9.5 0.73 1.50 4.30 20.5 11.5 0.90 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 15V, ID 4.7A, RL = 3.2, VGS = 10V, RGS = 9.1 (Figure 16) 4 21 31 25 40 85 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD ISD = 4.7A ISD = 2.7A Reverse Recovery Time Reverse Recovered Charge trr QRR ISD = 2.7A, dISD/dt = 100A/s ISD = 2.7A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.00 44 46 UNITS V V ns nC
Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) ID, DRAIN CURRENT (A) 5 VGS = 10V, RJA = 110oC/W 4
3 VGS = 4.5V, RJA = 110oC/W 2
1
0 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE
3
HUF76113T3ST Typical Performance Curves
2 1 THERMAL IMPEDANCE ZJA, NORMALIZED
(Continued)
0.1
DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM
RJA = 110oC/W
0.01 SINGLE PULSE
t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJA x RJA + TA 10-1 100 101 102 103
0.001 10-5 10-4 10-3 10-2 t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
RJA = 110oC/W
IDM, PEAK CURRENT (A)
100 VGS = 5V VGS = 10V
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I
= I25
150 - TA 125
10
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103
FIGURE 4. PEAK CURRENT CAPABILITY
200 100 ID, DRAIN CURRENT (A)
40 IAS, AVALANCHE CURRENT (A) TJ = MAX RATED TA = 25oC
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC
100s
10
10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS(MAX) = 30V 1 10
1ms
STARTING TJ = 150oC
10ms
1
1 100 0.01 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms)
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
4
HUF76113T3ST Typical Performance Curves
30 25 20 15 10 150oC 5 25oC 0 0 1 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 5 -55oC 0 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 4
(Continued)
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V
30 25 20 15 10 5 VGS = 3V PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TA = 25oC VGS = 10V VGS = 5V VGS = 4V VGS = 3.5V
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
80 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) 70 60 ID = 4.7A 50 40 ID = 0.5A 30 20 2 4 6
1.8 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 1.6 1.4 1.2 1.0 0.8 0.6 8 10
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 4.7A
-80
-40
0
40
80
120
160
VGS, GATE TO SOURCE VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
1.2 1.1 NORMALIZED GATE THRESHOLD VOLTAGE 1.0 0.9 0.8 0.7 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE
VGS = VDS, ID = 250A
ID = 250A
1.1
1.0
0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
5
HUF76113T3ST Typical Performance Curves
1000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD
(Continued)
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 15V 8
C, CAPACITANCE (pF)
800 CISS 600
6
400
4 WAVEFORMS IN DESCENDING ORDER: ID = 4.7A ID = 0.5A 0 5 10 Qg, GATE CHARGE (nC) 15 20
COSS
200
2
CRSS
0 0 5 10 15 20 25 VDS , DRAIN TO SOURCE VOLTAGE (V) 30
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
100 VGS = 4.5V, VDD = 15V, ID = 2.6A, RL = 5.8 tr SWITCHING TIME (ns) td(OFF) 60 tf SWITCHING TIME (ns) 80
150 VGS = 10V, VDD = 15V, ID = 4.7A, RL = 3.2 120 td(OFF) 90 tf 60 tr 30 td(ON)
40 td(ON) 20
0 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE ()
0 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE ()
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
6
HUF76113T3ST Test Circuits and Waveforms
(Continued)
VDS RL VDD VDS VGS = 10 VGS
+
Qg(TOT)
Qg(5) VDD VGS VGS = 1V 0 Qg(TH) Ig(REF) 0 VGS = 5V
DUT Ig(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
DUT RGS
VDD 0
10% 90%
10%
VGS VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 21. SWITCHING TIME TEST CIRCUIT
FIGURE 22. SWITCHING TIME WAVEFORM
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application's ambient temperature, TA (oC), and thermal resistance RJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.
In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias.
( T JM - T A ) P DM = -----------------------------Z JA
(EQ. 1)
5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
7
HUF76113T3ST
Intersil provides thermal information to assist the designer's preliminary application evaluation. Figure 23 defines the RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. The smallest areas represent
200
the minimum bond pad area and the package outline area respectively as determined from the package diagram Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads.
R JA = 65.3 - 25 x
ln ( Area )
(EQ. 2)
The transient thermal impedance (ZJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.
157oC/W - 0.026in2 RJA (oC/W) 150 133oC/W - 0.068in2 110oC/W - 0.173in2 100
50 0.01
RJA = 65.3 - 25 * ln(AREA) 0.1 AREA, TOP COPPER AREA (in2) 1
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA
120 100 IMPEDANCE (oC/W) ZJA, THERMAL 80 60 40 20 0 10-1
COPPER BOARD AREA - DESCENDING ORDER 0.077 in2 0.308 in2 0.535 in2 0.760 in2 0.996 in2
100
101 t, RECTANGULAR PULSE DURATION (s)
102
103
FIGURE 24. THERMAL IMPEDANCE vs MOUNTING PAD AREA
8
HUF76113T3ST PSPICE Electrical Model
.SUBCKT HUF76113T3 2 1 3 ;
CA 12 8 8.7e-10 CB 15 14 8.7e-10 CIN 6 8 5.6e-10
10
REV August 1998
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
EBREAK 11 7 17 18 34.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 1.69e-9 LSOURCE 3 7 4.1e-10 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
GATE 1
ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6
RLGATE CIN
MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3
S1A 12 S1B CA 13 + EGS 6 8 13 8
S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.2e-3 RGATE 9 20 2.5 RLDRAIN 2 5 10 RLGATE 1 9 16.9 RLSOURCE 3 7 4.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 12.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))} .MODEL DBODYMOD D (IS = 9.35e-13 RS = 1.39e-2 TRS1 = 1.12e-6 TRS2 = 1.05e-6 CJO = 9.85e-10 TT = 2.82e-8 M = 0.42) .MODEL DBREAKMOD D (RS = 1.5e-1 TRS1 = 3.51e-3 TRS2 = -5e-5) .MODEL DPLCAPMOD D (CJO = 4.4e-10 IS = 1e-30 N = 10 M = 0.6) .MODEL MMEDMOD NMOS (VTO = 1.95 KP = 3.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.5) .MODEL MSTROMOD NMOS (VTO = 2.23 KP = 29 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.68 KP = 0.095 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 25 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 5.8e-3 TC2 = 1.12e-5) .MODEL RSLCMOD RES (TC1 = -9.92e-3 TC2 = -2.06e-5) .MODEL RSOURCEMOD RES (TC1 = 3e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -1.2e-3 TC2 = -5.42e-6) .MODEL RVTEMPMOD RES (TC1 = -1.9e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.0 VOFF = -1.5) VON = -1.5 VOFF = -7.0) VON = -0.8 VOFF = 0.6) VON = 0.6 VOFF = -0.8)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
9
+
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
-
RDRAIN 21 16
DBODY
MWEAK MMED
RBREAK 18 RVTEMP 19
VBAT +
8 22 RVTHRES
HUF76113T3ST SABER Electrical Model
REV October 1998 template huf76113T3 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 9.35e-13, cjo = 9.85e-10, tt = 2.82e-8, m = 0.42) d..model dbreakmod = () d..model dplcapmod = (cjo = 4.4e-10, is = 1e-30, n = 10, m = 0.6) m..model mmedmod = (type=_n, vto = 1.95, kp = 3.55, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.23, kp = 29, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.68, kp = 0.095, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.0, voff = -1.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -7.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.8, voff = 0.6) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.6, voff = -0.8) c.ca n12 n8 = 8.7e-10 c.cb n15 n14 = 8.7e-10 c.cin n6 n8 = 5.6e-10 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
LGATE ESG + GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 6 MSTRO 8
LDRAIN DPLCAP 10 RSLC1 51 RSLC2 ISCL RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED EBREAK + 17 18 71 RDBODY 5 DRAIN 2
6 8 EVTHRES + 19 8
50 RDRAIN 21 16
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1.69e-9 l.lsource n3 n7 = 4.1e-10
DBODY
-
LSOURCE 7 RLSOURCE
SOURCE 3
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
12
RSOURCE S1A 13 8 S1B CA 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19
res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = -5e-7 res.rdbody n71 n5 = 1.39e-2, tc1 = 1.12e-6, tc2 = 1.05e-6 res.rdbreak n72 n5 = 1.5e-1, tc1 = 3.51e-3, tc2 = -5e-5 res.rdrain n50 n16 = 9.2e-3, tc1 = 5.8e-3, tc2 = 1.12e-5 res.rgate n9 n20 = 2.5 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 16.9 res.rlsource n3 n7 = 4.1 res.rslc1 n5 n51 = 1e-6, tc1 = -9.92e-3, tc2 = -2.06e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 12.5e-3, tc1 = 3e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.9e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -1.2e-3, tc2 = -5.42e-6 spe.ebreak n11 n7 n17 n18 = 34.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1
VBAT +
-
-
8 RVTHRES
22
equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5)) } }
10
HUF76113T3ST SPICE Thermal Model
REV August 1998 HUF76113T3ST Copper Area = 0.077 in2 CTHERM1 th 8 1.9e-5 CTHERM2 8 7 9.5e-4 CTHERM3 7 6 1.9e-3 CTHERM4 6 5 3.5e-3 CTHERM5 5 4 2.0e-2 CTHERM6 4 3 6.5e-2 CTHERM7 3 2 2.4e-1 CTHERM8 2 tl 9.0e-1 RTHERM1 th 8 3.5e-3 RTHERM2 8 7 3.1e-2 RTHERM3 7 6 2.0e-1 RTHERM4 6 5 8.0e-1 RTHERM5 5 4 2.1 RTHERM6 4 3 11 RTHERM7 3 2 32 RTHERM8 2 tl 66
th JUNCTION
RTHERM1 8
CTHERM1
RTHERM2 7
CTHERM2
RTHERM3 6
CTHERM3
RTHERM4 5
CTHERM4
SABER Thermal Model
Copper Area = 0.077 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 1.9e-5 ctherm.ctherm2 8 7 = 9.5e-4 ctherm.ctherm3 7 6 = 1.9e-3 ctherm.ctherm4 6 5 = 3.5e-3 ctherm.ctherm5 5 4 = 2.0e-2 ctherm.ctherm6 4 3 = 6.5e-2 ctherm.ctherm7 3 2 = 2.4e-1 ctherm.ctherm8 2 tl = 9.0e-1 rtherm.rtherm1 th 8 = 3.5e-3 rtherm.rtherm2 8 7 = 3.1e-2 rtherm.rtherm3 7 6 = 2.0e-1 rtherm.rtherm4 6 5 = 8.0e-1 rtherm.rtherm5 5 4 = 2.1 rtherm.rtherm6 4 3 = 11 rtherm.rtherm7 3 2 = 32 rtherm.rtherm8 2 tl = 66 }
RTHERM5 4
CTHERM5
RTHERM6 3
CTHERM6
RTHERM7 2
CTHERM7
RTHERM8
CTHERM8
tl
AMBIENT
TABLE 1. THERMAL MODELS COMPONENT CTHERM6 CTHERM7 CTHERM8 RTHERM6 RTHERM7 RTHERM8 0.077 in2 6.5e-2 2.4e-1 9.0e-1 11 32 66 0.308 in2 6.7e-2 3.5e-1 1.7 9 18 45.5 0.535 in2 6.7e-2 3.5e-1 1.9 9 16 40 0.76 in2 6.7e-2 3.5e-1 2 9 15.5 36 0.996 in2 6.7e-2 3.5e-1 2.4 9 14.5 31.5
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com 11
HUF76113T3ST SOT-223 (TO-261AA)
SMALL OUTLINE TRANSISTOR
D D1 A A1
INCHES SYMBOL A A1 b c MIN 0.063 0.0008 0.026 0.010 0.248 0.116 0.264 0.130 MAX 0.070 0.004 0.033 0.014 0.264 0.124 0.287 0.146
MILLIMETERS MIN 1.60 0.02 0.65 0.25 6.30 2.95 6.70 3.30 MAX 1.78 0.10 0.85 0.35 6.70 3.15 7.30 3.70 2 3 NOTES -
E
E1
D D1 c
L
E E1
e
b
0-10 0.003 IN 0.08 mm 0.15 3.8
e L
0.0905 BSC 0.036 -
2.30 BSC 0.91
0.079 2.0
0.244 6.2
NOTES: 1. All dimensions are within the allowable dimensions of Rev. A of JEDEC TO-261 outline dated 1-90. 2. Dimension "E1" does not include inter-lead flash or gate burr protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (.25mm) per side. 3. "L" is the length of terminal for soldering. 4. Controlling dimension: Millimeter. 5. Revision 5 dated 5-99.
0.079 2.0
0.059 1.5
0.091 2.3
0.181 4.6 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
SOT-223
16mm TAPE AND REEL
1.5mm DIA. HOLE
4.0mm USER DIRECTION OF FEED 2.0mm 1.75mm C L
16mm
8.0mm
COVER TAPE ACCESS HOLE 22.4mm 13mm 330mm GENERAL INFORMATION 1. 3500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS. 100mm
16.4mm
12


▲Up To Search▲   

 
Price & Availability of HUF76113T3ST

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X